119 research outputs found

    Ariel - Volume 3 Number 2

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Stephen Flynn Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Paul Bialas Milton Packer Robert Breckenridge Lynne Porter Mark Pearlman Terry Burt Mike Leo Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof

    Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar

    Get PDF
    Magnetars are young, rotating neutron stars that possess larger magnetic fields (B ≈ 10¹³-10¹⁵G) and longer rotational periods (P ≈ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetar's 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars

    Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar

    Get PDF
    Magnetars are young, rotating neutron stars that possess larger magnetic fields (B ≈ 10¹³-10¹⁵G) and longer rotational periods (P ≈ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetar's 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars

    Comprehensive Bayesian analysis of FRB-like bursts from SGR 1935+2154 observed by CHIME/FRB

    Full text link
    The bright millisecond-duration radio burst from the Galactic magnetar SGR 1935+2154 in 2020 April was a landmark event, demonstrating that at least some fast radio burst (FRB) sources could be magnetars. The two-component burst was temporally coincident with peaks observed within a contemporaneous short X-ray burst envelope, marking the first instance where FRB-like bursts were observed to coincide with X-ray counterparts. In this study, we detail five new radio burst detections from SGR 1935+2154, observed by the CHIME/FRB instrument between October 2020 and December 2022. We develop a fast and efficient Bayesian inference pipeline that incorporates state-of-the-art Markov chain Monte Carlo techniques and use it to model the intensity data of these bursts under a flexible burst model. We revisit the 2020 April burst and corroborate that both the radio sub-components lead the corresponding peaks in their high-energy counterparts. For a burst observed in 2022 October, we find that our estimated radio pulse arrival time is contemporaneous with a short X-ray burst detected by GECAM and HEBS, and Konus-Wind and is consistent with the arrival time of a radio burst detected by GBT. We present flux and fluence estimates for all five bursts, employing an improved estimator for bursts detected in the side-lobes. We also present upper limits on radio emission for X-ray emission sources which were within CHIME/FRB's field-of-view at trigger time. Finally, we present our exposure and sensitivity analysis and estimate the Poisson rate for FRB-like events from SGR 1935+2154 to be 0.0050.004+0.0820.005^{+0.082}_{-0.004} events/day above a fluence of 10 kJy ms10~\mathrm{kJy~ms} during the interval from 28 August 2018 to 1 December 2022, although we note this was measured during a time of great X-ray activity from the source.Comment: 22 pages, 6 figures, 4 tables. To be submitted to Ap

    CHIME Discovery of a Binary Pulsar with a Massive Non-Degenerate Companion

    Get PDF
    Of the more than 3000 radio pulsars currently known, only ∼300 are in binary systems, and only five of these consist of young pulsars with massive nondegenerate companions. We present the discovery and initial timing, accomplished using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope, of the sixth such binary pulsar, PSR J2108+4516, a 0.577 s radio pulsar in a 269 day orbit of eccentricity 0.09 with a companion of minimum mass 11 M⊙. Notably, the pulsar undergoes periods of substantial eclipse, disappearing from the CHIME 400–800 MHz observing band for a large fraction of its orbit, and displays significant dispersion measure and scattering variations throughout its orbit, pointing to the possibility of a circumstellar disk or very dense stellar wind associated with the companion star. Subarcsecond resolution imaging with the Karl G. Jansky Very Large Array unambiguously demonstrates that the companion is a bright, V ≃ 11 OBe star, EM* UHA 138, located at a distance of 3.26(14) kpc. Archival optical observations of EM* UHA 138 approximately suggest a companion mass ranging from 17.5 M⊙ < Mc < 23 M⊙, in turn constraining the orbital inclination angle to 50fdg3 ≲ i ≲ 58fdg3. With further multiwavelength follow-up, PSR J2108+4516 promises to serve as another rare laboratory for the exploration of companion winds, circumstellar disks, and short-term evolution through extended-body orbital dynamics

    Landsat 9 Thermal Infrared Sensor 2 Architecture and Design

    Get PDF
    The Thermal Infrared Sensor 2 (TIRS-2) will fly aboard the Landsat 9 spacecraft and leverages the Thermal Infrared Sensor (TIRS) design currently flying on Landsat 8. TIRS-2 will provide similar science data as TIRS, but is not a buildto-print rebuild due to changes in requirements and improvements in absolute accuracy. The heritage TIRS design has been modified to reduce the influence of stray light and to add redundancy for higher reliability over a longer mission life. The TIRS-2 development context differs from the TIRS scenario, adding to the changes. The TIRS-2 team has also learned some lessons along the way

    Reporting of euthanasia and physician-assisted suicide in the Netherlands: descriptive study

    Get PDF
    Background: An important principle underlying the Dutch Euthanasia Act is physicians' responsibility to alleviate patients' suffering. The Dutch Act states that euthanasia and physician-assisted suicide are not punishable if the attending physician acts in accordance with criteria of due care. These criteria concern the patient's request, the patient's suffering (unbearable and hopeless), the information provided to the patient, the presence of reasonable alternatives, consultation of another physician and the applied method of ending life. To demonstrate their compliance, the Act requires physicians to report euthanasia to a review committee. We studied which arguments Dutch physicians use to substantiate their adherence to the criteria and which aspects attract review committees' attention. Methods: We examined 158 files of reported euthanasia and physician-assisted suicide cases that were approved by the review committees. We studied the physicians' reports and the verdicts of the review committees by using a checklist. Results: Physicians reported that the patient's request had been well-considered because the patient was clear-headed (65%) and/or had repeated the request several times (23%). Unbearable suffering was often substantiated with physical symptoms (62%), function loss (33%), dependency (28%) or deterioration (15%). In 35%, physicians reported that there had been alternatives to relieve patients' suffering which were refused by the majority. The nature of the relationship with the consultant was sometimes unclear: the consultant was reported to have been an unknown colleague (39%), a known colleague (21%), otherwise (25%), or not clearly specified in the report (24%). Review committees relatively often scrutinized the consultation (41%) and the patient's (unbearable) suffering (32%); they had few questions about possible alternatives (1%). Conclusion: Dutch physicians substantiate their adherence to the criteria in a variable way with an emphasis on physical symptoms. The information they provide is in most cases sufficient to enable adequate review. Review committees' control seems to focus on (unbearable) suffering and on procedural issues

    Sub-second periodicity in a fast radio burst

    Full text link
    Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light-years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multi-component FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components with a significance of 6.5 sigmas. The long (~3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.Comment: Updated to conform to the accepted versio

    First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus

    Get PDF
    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing
    corecore